Optimizing K-Means Initial Number of Cluster Based Heuristic Approach: Literature Review Analysis Perspective
نویسندگان
چکیده
منابع مشابه
Optimizing K-Means by Fixing Initial Cluster Centers
Data mining techniques help in business decision making and predicting behaviors and future trends. Clustering is a data mining technique used to make groups of objects that are somehow similar in characteristics. Clustering analyzes data objects without consulting a known class label or category i.e. it is an unsupervised data mining technique. Kmeans is a widely used partitional clustering al...
متن کاملRanking and Clustering Iranian Provinces Based on COVID-19 Spread: K-Means Cluster Analysis
Introduction: The Coronavirus has crossed geographical borders. This study was performed to rank and cluster Iranian provinces based on coronavirus disease (COVID-19) recorded cases from February 19 to March 22, 2020. Materials and Methods: This cross-sectional study was conducted in 31 provinces of Iran using the daily number of confirmed cases. Cumulative Frequency (CF) and Adjusted CF (ACF)...
متن کاملModified K-Means for Better Initial Cluster Centres
The k-means clustering algorithm is most popularly used in data mining for real world applications. The efficiency and performance of the k-means algorithm is greatly affected by initial cluster centers as different initial cluster centers often lead to different clustering. In this paper, we propose a modified k-means algorithm which has additional steps for selecting better cluster centers. W...
متن کامل3D Building Models Segmentation Based on K-means++ Cluster Analysis
3D mesh model segmentation is drawing increasing attentions from digital geometry processing field in recent years. The original 3D mesh model need to be divided into separate meaningful parts or surface patches based on certain standards to support reconstruction, compressing, texture mapping, model retrieval and etc. Therefore, segmentation is a key problem for 3D mesh model segmentation. In ...
متن کاملDistance Based Hybrid Approach for Cluster Analysis Using Variants of K-means and Evolutionary Algorithm
Clustering is a process of grouping same objects into a specified number of clusters. K-means and Kmedoids algorithms are the most popular partitional clustering techniques for large data sets. However, they are sensitive to random selection of initial centroids and are fall into local optimal solution. K-means++ algorithm has good convergence rate than other algorithms. Distance metric is used...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Artificial Intelligence
سال: 2019
ISSN: 2686-3251,2407-7275
DOI: 10.36079/lamintang.ijai-0602.40